Write the following cubes in expanded form : $\left[x-\frac{2}{3} y\right]^{3}$
Using Identity $VI$ and Identity $VII,$ we have
$(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y),$ and $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$
$\left(x-\frac{2}{3} y\right)^{3}=x^{3}-\left(\frac{2}{3} y\right)^{3}-3(x)\left(\frac{2}{3} y\right)\left[x-\frac{2}{3} y\right]$
$= x ^{3}-\frac{8}{27} y ^{3}-2 xy \left[x-\frac{2}{3} y \right] $ $[$ Using Identity $VII ]$
$=x^{3}-\frac{8}{27} y^{3}-\left[(2 x y) x-(2 x y) \frac{2}{3} y\right]=x^{3}-\frac{8}{27} y^{3}+\left[2 x^{2} y-\frac{4}{3} x y^{2}\right]$
$=x^{3}-\frac{8}{27} y^{3}-2 x^{2} y+\frac{4}{3} x y^{2}$
Evaluate using suitable identities : $(999)^{3}$
Find the remainder when $x^{3}+3 x^{2}+3 x+1$ is divided by $5+2 x$.
Divide the polynomial $3 x^{4}-4 x^{3}-3 x-1$ by $x-1$.
Expand each of the following, using suitable identities : $\left[\frac{1}{4} a-\frac{1}{2} b+1\right]^{2}$
Find $p(0)$, $p(1)$ and $p(2)$ for of the following polynomials : $p(y)=y^{2}-y+1$